msmbuilder.preprocessing.StandardScaler¶
-
class
msmbuilder.preprocessing.
StandardScaler
(copy=True, with_mean=True, with_std=True)¶ Standardize features by removing the mean and scaling to unit variance
Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the transform method.
Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance).
For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected.
This scaler can also be applied to sparse CSR or CSC matrices by passing with_mean=False to avoid breaking the sparsity structure of the data.
Read more in the User Guide.
Parameters: - copy : boolean, optional, default True
If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned.
- with_mean : boolean, True by default
If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory.
- with_std : boolean, True by default
If True, scale the data to unit variance (or equivalently, unit standard deviation).
See also
scale
- Equivalent function without the estimator API.
sklearn.decomposition.PCA
- Further removes the linear correlation across features with ‘whiten=True’.
Notes
For a comparison of the different scalers, transformers, and normalizers, see examples/preprocessing/plot_all_scaling.py.
Examples
>>> from sklearn.preprocessing import StandardScaler >>> >>> data = [[0, 0], [0, 0], [1, 1], [1, 1]] >>> scaler = StandardScaler() >>> print(scaler.fit(data)) StandardScaler(copy=True, with_mean=True, with_std=True) >>> print(scaler.mean_) [ 0.5 0.5] >>> print(scaler.transform(data)) [[-1. -1.] [-1. -1.] [ 1. 1.] [ 1. 1.]] >>> print(scaler.transform([[2, 2]])) [[ 3. 3.]]
Attributes: - scale_ : ndarray, shape (n_features,)
Per feature relative scaling of the data.
New in version 0.17: scale_
- mean_ : array of floats with shape [n_features]
The mean value for each feature in the training set.
- var_ : array of floats with shape [n_features]
The variance for each feature in the training set. Used to compute scale_
- n_samples_seen_ : int
The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across
partial_fit
calls.
Methods
fit
(sequences[, y])Fit Preprocessing to X. fit_transform
(sequences[, y])Fit the model and apply preprocessing get_params
([deep])Get parameters for this estimator. inverse_transform
(X[, copy])Scale back the data to the original representation partial_fit
(sequence[, y])Fit Preprocessing to X. partial_transform
(sequence)Apply preprocessing to single sequence set_params
(**params)Set the parameters of this estimator. summarize
()Return some diagnostic summary statistics about this Markov model transform
(sequences)Apply preprocessing to sequences -
__init__
(copy=True, with_mean=True, with_std=True)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([copy, with_mean, with_std])Initialize self. fit
(sequences[, y])Fit Preprocessing to X. fit_transform
(sequences[, y])Fit the model and apply preprocessing get_params
([deep])Get parameters for this estimator. inverse_transform
(X[, copy])Scale back the data to the original representation partial_fit
(sequence[, y])Fit Preprocessing to X. partial_transform
(sequence)Apply preprocessing to single sequence set_params
(**params)Set the parameters of this estimator. summarize
()Return some diagnostic summary statistics about this Markov model transform
(sequences)Apply preprocessing to sequences -
fit
(sequences, y=None)¶ Fit Preprocessing to X.
Parameters: - sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries. Each sequence may have a different length, but they all must have the same number of features.
- y : None
Ignored
Returns: - self
-
fit_transform
(sequences, y=None)¶ Fit the model and apply preprocessing
Parameters: - sequences: list of array-like, each of shape (n_samples_i, n_features)
Training data, where n_samples_i in the number of samples in sequence i and n_features is the number of features.
- y : None
Ignored
Returns: - sequence_new : list of array-like, each of shape (n_samples_i, n_components)
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: - deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: - params : mapping of string to any
Parameter names mapped to their values.
-
inverse_transform
(X, copy=None)¶ Scale back the data to the original representation
Parameters: - X : array-like, shape [n_samples, n_features]
The data used to scale along the features axis.
- copy : bool, optional (default: None)
Copy the input X or not.
Returns: - X_tr : array-like, shape [n_samples, n_features]
Transformed array.
-
partial_fit
(sequence, y=None)¶ Fit Preprocessing to X. Parameters ———- sequence : array-like, [sequence_length, n_features]
A multivariate timeseries.- y : None
- Ignored
self
-
partial_transform
(sequence)¶ Apply preprocessing to single sequence
Parameters: - sequence: array like, shape (n_samples, n_features)
A single sequence to transform
Returns: - out : array like, shape (n_samples, n_features)
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: - self
-
summarize
()¶ Return some diagnostic summary statistics about this Markov model
-
transform
(sequences)¶ Apply preprocessing to sequences
Parameters: - sequences: list of array-like, each of shape (n_samples_i, n_features)
Sequence data to transform, where n_samples_i in the number of samples in sequence i and n_features is the number of features.
Returns: - sequence_new : list of array-like, each of shape (n_samples_i, n_components)