BayesianMarkovStateModel
This example demonstrates the class BayesianMarkovStateModel
, which uses Metropolis Markov chain Monte Carlo (MCMC) to sample over the posterior distribution of transition matrices, given the observed transitions in your dataset. This can be useful for evaluating the uncertainty due to sampling in your dataset.
import numpy as np
from matplotlib import pyplot as plt
from mdtraj.utils import timing
from msmbuilder.example_datasets import load_doublewell
from msmbuilder.cluster import NDGrid
from msmbuilder.msm import BayesianMarkovStateModel, MarkovStateModel
trjs = load_doublewell(random_state=0)['trajectories']
plt.hist(np.concatenate(trjs), bins=50, log=True)
plt.ylabel('Frequency')
plt.show()
And the build one MSM using the MLE transition matrix estimator, and one with the Bayesian estimator
clusterer = NDGrid(n_bins_per_feature=10)
mle_msm = MarkovStateModel(lag_time=100)
b_msm = BayesianMarkovStateModel(lag_time=100, n_samples=10000, n_steps=1000)
states = clusterer.fit_transform(trjs)
with timing('running mcmc'):
b_msm.fit(states)
mle_msm.fit(states)
plt.subplot(2, 1, 1)
plt.plot(b_msm.all_transmats_[:, 0, 0])
plt.axhline(mle_msm.transmat_[0, 0], c='k')
plt.ylabel('t_00')
plt.subplot(2, 1, 2)
plt.ylabel('t_23')
plt.xlabel('MCMC Iteration')
plt.plot(b_msm.all_transmats_[:, 2, 3])
plt.axhline(mle_msm.transmat_[2, 3], c='k')
plt.show()
plt.plot(b_msm.all_timescales_[:, 0], label='MCMC')
plt.axhline(mle_msm.timescales_[0], c='k', label='MLE')
plt.legend(loc='best')
plt.ylabel('Longest timescale')
plt.xlabel('MCMC iteration')
plt.show()
The MCMC sampling is a lot harder to converge
clusterer = NDGrid(n_bins_per_feature=50)
mle_msm = MarkovStateModel(lag_time=100)
b_msm = BayesianMarkovStateModel(lag_time=100, n_samples=1000, n_steps=100000)
states = clusterer.fit_transform(trjs)
with timing('running mcmc (50 states)'):
b_msm.fit(states)
mle_msm.fit(states)
plt.plot(b_msm.all_timescales_[:, 0], label='MCMC')
plt.axhline(mle_msm.timescales_[0], c='k', label='MLE')
plt.legend(loc='best')
plt.ylabel('Longest timescale')
plt.xlabel('MCMC iteration')
plt.plot(b_msm.all_transmats_[:, 0, 0], label='MCMC')
plt.axhline(mle_msm.transmat_[0, 0], c='k', label='MLE')
plt.legend(loc='best')
plt.ylabel('t_00')
plt.xlabel('MCMC iteration')
(bayesian-msm.ipynb; bayesian-msm_evaluated.ipynb; bayesian-msm.py)