msmbuilder.featurizer.GaussianSolventFeaturizer¶
- 
class msmbuilder.featurizer.GaussianSolventFeaturizer(solute_indices, solvent_indices, sigma, periodic=False)¶
- Featurizer on weighted pairwise distance between solute and solvent. - We apply a Gaussian kernel to each solute-solvent pairwise distance and sum the kernels for each solute atom, resulting in a vector of len(solute_indices). - The values can be physically interpreted as the degree of solvation of each solute atom. - Parameters: - solute_indices : np.ndarray, shape=(n_solute,) - Indices of solute atoms - solvent_indices : np.ndarray, shape=(n_solvent,) - Indices of solvent atoms - sigma : float - Sets the length scale for the gaussian kernel - periodic : bool - Whether to consider a periodic system in distance calculations - References - ..[1] Gu, Chen, et al. BMC Bioinformatics 14, no. Suppl 2 (January 21, 2013): S8. doi:10.1186/1471-2105-14-S2-S8. - Methods - featurize(traj)- fit(traj_list[, y])- fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - partial_transform(traj)- Featurize an MD trajectory into a vector space via calculation - set_params(**params)- Set the parameters of this estimator. - summarize()- Return some diagnostic summary statistics about this Markov model - transform(traj_list[, y])- Featurize a several trajectories. - 
__init__(solute_indices, solvent_indices, sigma, periodic=False)¶
 - Methods - __init__(solute_indices, solvent_indices, sigma)- featurize(traj)- fit(traj_list[, y])- fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - partial_transform(traj)- Featurize an MD trajectory into a vector space via calculation - set_params(**params)- Set the parameters of this estimator. - summarize()- Return some diagnostic summary statistics about this Markov model - transform(traj_list[, y])- Featurize a several trajectories. - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
partial_transform(traj)¶
- Featurize an MD trajectory into a vector space via calculation of solvent fingerprints - Parameters: - traj : mdtraj.Trajectory - A molecular dynamics trajectory to featurize. - Returns: - features : np.ndarray, dtype=float, shape=(n_samples, n_features) - A featurized trajectory is a 2D array of shape (length_of_trajectory x n_features) where each features[i] vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory. - See also - transform
- simultaneously featurize a collection of MD trajectories
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self 
 - 
summarize()¶
- Return some diagnostic summary statistics about this Markov model 
 - 
transform(traj_list, y=None)¶
- Featurize a several trajectories. - Parameters: - traj_list : list(mdtraj.Trajectory) - Trajectories to be featurized. - Returns: - features : list(np.ndarray), length = len(traj_list) - The featurized trajectories. features[i] is the featurized version of traj_list[i] and has shape (n_samples_i, n_features) 
 
-