msmbuilder.featurizer.SuperposeFeaturizer¶
- 
class msmbuilder.featurizer.SuperposeFeaturizer(atom_indices, reference_traj, superpose_atom_indices=None)¶
- Featurizer based on euclidian atom distances to reference structure. - This featurizer transforms a dataset containing MD trajectories into a vector dataset by representing each frame in each of the MD trajectories by a vector containing the distances from a specified set of atoms to the ‘reference position’ of those atoms, in - reference_traj.- Parameters: - atom_indices : np.ndarray, shape=(n_atoms,), dtype=int - The indices of the atoms to superpose and compute the distances with - reference_traj : md.Trajectory - The reference conformation to superpose each frame with respect to (only the first frame in reference_traj is used) - superpose_atom_indices : np.ndarray, shape=(n_atoms,), dtype=int - If not None, these atom_indices are used for the superposition - Methods - describe_features(traj)- Generic method for describing features. - featurize(traj)- fit(traj_list[, y])- fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - partial_transform(traj)- Featurize an MD trajectory into a vector space via distance - set_params(**params)- Set the parameters of this estimator. - summarize()- Return some diagnostic summary statistics about this Markov model - transform(traj_list[, y])- Featurize a several trajectories. - 
__init__(atom_indices, reference_traj, superpose_atom_indices=None)¶
 - Methods - __init__(atom_indices, reference_traj[, ...])- describe_features(traj)- Generic method for describing features. - featurize(traj)- fit(traj_list[, y])- fit_transform(X[, y])- Fit to data, then transform it. - get_params([deep])- Get parameters for this estimator. - partial_transform(traj)- Featurize an MD trajectory into a vector space via distance - set_params(**params)- Set the parameters of this estimator. - summarize()- Return some diagnostic summary statistics about this Markov model - transform(traj_list[, y])- Featurize a several trajectories. - 
describe_features(traj)¶
- Generic method for describing features. - Parameters: - traj : mdtraj.Trajectory - Trajectory to use - Returns: - feature_descs : list of dict - Dictionary describing each feature with the following information about the atoms participating in each feature - resnames: unique names of residues
- atominds: the four atom indicies
- resseqs: unique residue sequence ids (not necessarily 0-indexed)
- resids: unique residue ids (0-indexed)
- featurizer: Featurizer name
- featuregroup: Other information
 - Notes - Method resorts to returning N/A for everything if describe_features in not implemented in the sub_class 
 - 
fit_transform(X, y=None, **fit_params)¶
- Fit to data, then transform it. - Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X. - Parameters: - X : numpy array of shape [n_samples, n_features] - Training set. - y : numpy array of shape [n_samples] - Target values. - Returns: - X_new : numpy array of shape [n_samples, n_features_new] - Transformed array. 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters: - deep: boolean, optional - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
partial_transform(traj)¶
- Featurize an MD trajectory into a vector space via distance after superposition - Parameters: - traj : mdtraj.Trajectory - A molecular dynamics trajectory to featurize. - Returns: - features : np.ndarray, dtype=float, shape=(n_samples, n_features) - A featurized trajectory is a 2D array of shape (length_of_trajectory x n_features) where each features[i] vector is computed by applying the featurization function to the `i`th snapshot of the input trajectory. - See also - transform
- simultaneously featurize a collection of MD trajectories
 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self 
 - 
summarize()¶
- Return some diagnostic summary statistics about this Markov model 
 - 
transform(traj_list, y=None)¶
- Featurize a several trajectories. - Parameters: - traj_list : list(mdtraj.Trajectory) - Trajectories to be featurized. - Returns: - features : list(np.ndarray), length = len(traj_list) - The featurized trajectories. features[i] is the featurized version of traj_list[i] and has shape (n_samples_i, n_features) 
 
-