Preprocessing¶
Preprocessing of a dataset is a common requirement for many machine learning estimators and may involve scaling, centering, normalization, smoothing, binarization, and imputation methods.
Preprocessors¶
| Binarizer([threshold, copy]) | Binarize data (set feature values to 0 or 1) according to a threshold | 
| Butterworth([width, order, analog]) | Smooth time-series data using a low-pass, zero-delay Butterworth filter. | 
| EWMA([com, span, halflife, min_periods, ...]) | Smooth time-series data using an exponentially-weighted moving average filter | 
| DoubleEWMA([com, span, halflife, ...]) | Smooth time-series data using forward and backward exponentially-weighted moving average filters | 
| Imputer([missing_values, strategy, axis, ...]) | Imputation transformer for completing missing values. | 
| KernelCenterer | Center a kernel matrix | 
| LabelBinarizer([neg_label, pos_label, ...]) | Binarize labels in a one-vs-all fashion | 
| MultiLabelBinarizer([classes, sparse_output]) | Transform between iterable of iterables and a multilabel format | 
| MinMaxScaler([feature_range, copy]) | Transforms features by scaling each feature to a given range. | 
| MaxAbsScaler([copy]) | Scale each feature by its maximum absolute value. | 
| Normalizer([norm, copy]) | Normalize samples individually to unit norm. | 
| RobustScaler([with_centering, with_scaling, ...]) | Scale features using statistics that are robust to outliers. | 
| StandardScaler([copy, with_mean, with_std]) | Standardize features by removing the mean and scaling to unit variance | 
| PolynomialFeatures([degree, ...]) | Generate polynomial and interaction features. |