msmbuilder.preprocessing.KernelCenterer¶
-
class
msmbuilder.preprocessing.
KernelCenterer
¶ Center a kernel matrix
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False).
Read more in the User Guide.
Methods
fit
(sequences[, y])Fit Preprocessing to X. fit_transform
(sequences[, y])Fit the model and apply preprocessing get_params
([deep])Get parameters for this estimator. partial_fit
(sequence[, y])Fit Preprocessing to X. partial_transform
(sequence)Apply preprocessing to single sequence set_params
(**params)Set the parameters of this estimator. summarize
()Return some diagnostic summary statistics about this Markov model transform
(sequences)Apply preprocessing to sequences -
__init__
()¶ Initialize self. See help(type(self)) for accurate signature.
Methods
fit
(sequences[, y])Fit Preprocessing to X. fit_transform
(sequences[, y])Fit the model and apply preprocessing get_params
([deep])Get parameters for this estimator. partial_fit
(sequence[, y])Fit Preprocessing to X. partial_transform
(sequence)Apply preprocessing to single sequence set_params
(**params)Set the parameters of this estimator. summarize
()Return some diagnostic summary statistics about this Markov model transform
(sequences)Apply preprocessing to sequences -
fit
(sequences, y=None)¶ Fit Preprocessing to X.
Parameters: sequences : list of array-like, each of shape [sequence_length, n_features]
A list of multivariate timeseries. Each sequence may have a different length, but they all must have the same number of features.
y : None
Ignored
Returns: self
-
fit_transform
(sequences, y=None)¶ Fit the model and apply preprocessing
Parameters: sequences: list of array-like, each of shape (n_samples_i, n_features)
Training data, where n_samples_i in the number of samples in sequence i and n_features is the number of features.
y : None
Ignored
Returns: sequence_new : list of array-like, each of shape (n_samples_i, n_components)
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep: boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
partial_fit
(sequence, y=None)¶ Fit Preprocessing to X.
Parameters: sequence : array-like, [sequence_length, n_features]
A multivariate timeseries.
y : None
Ignored
Returns: self
-
partial_transform
(sequence)¶ Apply preprocessing to single sequence
Parameters: sequence: array like, shape (n_samples, n_features)
A single sequence to transform
Returns: out : array like, shape (n_samples, n_features)
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self
-
summarize
()¶ Return some diagnostic summary statistics about this Markov model
-
transform
(sequences)¶ Apply preprocessing to sequences
Parameters: sequences: list of array-like, each of shape (n_samples_i, n_features)
Sequence data to transform, where n_samples_i in the number of samples in sequence i and n_features is the number of features.
Returns: sequence_new : list of array-like, each of shape (n_samples_i, n_components)
-