Featurizer based on distances between specified pairs of atoms.
This featurizer transforms a dataset containing MD trajectories into a vector dataset by representing each frame in each of the MD trajectories by a vector of the distances between the specified pairs of atoms.
| Parameters: | pair_indices : np.ndarray, shape=(n_pairs, 2), dtype=int
periodic : bool, default=False
exponent : float
|
|---|
Methods
| featurize(traj) | |
| fit(traj_list[, y]) | |
| fit_transform(X[, y]) | Fit to data, then transform it. |
| get_params([deep]) | Get parameters for this estimator. |
| partial_transform(traj) | Featurize an MD trajectory into a vector space via pairwise |
| save(filename) | |
| set_params(**params) | Set the parameters of this estimator. |
| summarize() | Return some diagnostic summary statistics about this Markov model |
| transform(traj_list[, y]) | Featurize a several trajectories. |
Featurize an MD trajectory into a vector space via pairwise atom-atom distances
| Parameters: | traj : mdtraj.Trajectory
|
|---|---|
| Returns: | features : np.ndarray, dtype=float, shape=(n_samples, n_features)
|
See also
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
|---|---|
| Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
| Parameters: | deep: boolean, optional
|
|---|---|
| Returns: | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: | self |
|---|
Return some diagnostic summary statistics about this Markov model
Featurize a several trajectories.
| Parameters: | traj_list : list(mdtraj.Trajectory)
|
|---|---|
| Returns: | features : list(np.ndarray), length = len(traj_list)
|