Featurizer based on residue-residue distances
This featurizer transforms a dataset containing MD trajectories into a vector dataset by representing each frame in each of the MD trajectories by a vector of the distances between pairs of amino-acid residues.
The exact method for computing the the distance between two residues is configurable with the scheme parameter.
Parameters: | contacts : np.ndarray or ‘all’
scheme : {‘ca’, ‘closest’, ‘closest-heavy’}
ignore_nonprotein : bool
|
---|
Methods
featurize(traj) | |
fit(traj_list[, y]) | |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
partial_transform(traj) | Featurize an MD trajectory into a vector space via of residue-residue |
save(filename) | |
set_params(**params) | Set the parameters of this estimator. |
summarize() | Return some diagnostic summary statistics about this Markov model |
transform(traj_list[, y]) | Featurize a several trajectories. |
Featurize an MD trajectory into a vector space via of residue-residue distances
Parameters: | traj : mdtraj.Trajectory
|
---|---|
Returns: | features : np.ndarray, dtype=float, shape=(n_samples, n_features)
|
See also
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
Parameters: | deep: boolean, optional
|
---|---|
Returns: | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: | self |
---|
Return some diagnostic summary statistics about this Markov model
Featurize a several trajectories.
Parameters: | traj_list : list(mdtraj.Trajectory)
|
---|---|
Returns: | features : list(np.ndarray), length = len(traj_list)
|