Featurizer based on distribution of reciprocal interatomic distances (DRID)
This featurizer transforms a dataset containing MD trajectories into a vector dataset by representing each frame in each of the MD trajectories by a vector containing the first three moments of a collection of reciprocal interatomic distances. For details, see [1].
Parameters: | atom_indices : array-like of ints, default=None
|
---|
References
[R23] | Zhou, Caflisch; Distribution of Reciprocal of Interatomic Distances: A Fast Structural Metric. JCTC 2012 doi:10.1021/ct3003145 |
Methods
featurize(traj) | |
fit(traj_list[, y]) | |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
partial_transform(traj) | Featurize an MD trajectory into a vector space using the distribution of reciprocal interatomic distance (DRID) method. |
save(filename) | |
set_params(**params) | Set the parameters of this estimator. |
summarize() | Return some diagnostic summary statistics about this Markov model |
transform(traj_list[, y]) | Featurize a several trajectories. |
Featurize an MD trajectory into a vector space using the distribution of reciprocal interatomic distance (DRID) method.
Parameters: | traj : mdtraj.Trajectory
|
---|---|
Returns: | features : np.ndarray, dtype=float, shape=(n_samples, n_features)
|
See also
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
Parameters: | deep: boolean, optional
|
---|---|
Returns: | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: | self |
---|
Return some diagnostic summary statistics about this Markov model
Featurize a several trajectories.
Parameters: | traj_list : list(mdtraj.Trajectory)
|
---|---|
Returns: | features : list(np.ndarray), length = len(traj_list)
|