Featurizer on weighted pairwise distance between solute and solvent.
We apply a Gaussian kernel to each solute-solvent pairwise distance and sum the kernels for each solute atom, resulting in a vector of len(solute_indices).
The values can be physically interpreted as the degree of solvation of each solute atom.
Parameters: | solute_indices : np.ndarray, shape=(n_solute,)
solvent_indices : np.ndarray, shape=(n_solvent,)
sigma : float
periodic : bool
|
---|
References
..[1] Gu, Chen, et al. BMC Bioinformatics 14, no. Suppl 2 (January 21, 2013): S8. doi:10.1186/1471-2105-14-S2-S8.
Methods
featurize(traj) | |
fit(traj_list[, y]) | |
fit_transform(X[, y]) | Fit to data, then transform it. |
get_params([deep]) | Get parameters for this estimator. |
partial_transform(traj) | Featurize an MD trajectory into a vector space via calculation |
save(filename) | |
set_params(**params) | Set the parameters of this estimator. |
summarize() | Return some diagnostic summary statistics about this Markov model |
transform(traj_list[, y]) | Featurize a several trajectories. |
Featurize an MD trajectory into a vector space via calculation of solvent fingerprints
Parameters: | traj : mdtraj.Trajectory
|
---|---|
Returns: | features : np.ndarray, dtype=float, shape=(n_samples, n_features)
|
See also
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
Parameters: | X : numpy array of shape [n_samples, n_features]
y : numpy array of shape [n_samples]
|
---|---|
Returns: | X_new : numpy array of shape [n_samples, n_features_new]
|
Get parameters for this estimator.
Parameters: | deep: boolean, optional
|
---|---|
Returns: | params : mapping of string to any
|
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: | self |
---|
Return some diagnostic summary statistics about this Markov model
Featurize a several trajectories.
Parameters: | traj_list : list(mdtraj.Trajectory)
|
---|---|
Returns: | features : list(np.ndarray), length = len(traj_list)
|