Featurizer based on distribution of reciprocal interatomic distances (DRID)
This featurizer transforms a dataset containing MD trajectories into a vector dataset by representing each frame in each of the MD trajectories by a vector containing the first three moments of a collection of reciprocal interatomic distances. For details, see [1].
| Parameters: | atom_indices : array-like of ints, default=None 
  | 
|---|
References
| [R23] | Zhou, Caflisch; Distribution of Reciprocal of Interatomic Distances: A Fast Structural Metric. JCTC 2012 doi:10.1021/ct3003145 | 
Methods
| featurize(traj) | |
| fit(traj_list[, y]) | |
| fit_transform(X[, y]) | Fit to data, then transform it. | 
| get_params([deep]) | Get parameters for this estimator. | 
| partial_transform(traj) | Featurize an MD trajectory into a vector space using the distribution of reciprocal interatomic distance (DRID) method. | 
| save(filename) | |
| set_params(**params) | Set the parameters of this estimator. | 
| summarize() | Return some diagnostic summary statistics about this Markov model | 
| transform(traj_list[, y]) | Featurize a several trajectories. | 
Featurize an MD trajectory into a vector space using the distribution of reciprocal interatomic distance (DRID) method.
| Parameters: | traj : mdtraj.Trajectory 
  | 
|---|---|
| Returns: | features : np.ndarray, dtype=float, shape=(n_samples, n_features) 
  | 
See also
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
| Parameters: | X : numpy array of shape [n_samples, n_features] 
 y : numpy array of shape [n_samples] 
  | 
|---|---|
| Returns: | X_new : numpy array of shape [n_samples, n_features_new] 
  | 
Get parameters for this estimator.
| Parameters: | deep: boolean, optional 
  | 
|---|---|
| Returns: | params : mapping of string to any 
  | 
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
| Returns: | self | 
|---|
Return some diagnostic summary statistics about this Markov model
Featurize a several trajectories.
| Parameters: | traj_list : list(mdtraj.Trajectory) 
  | 
|---|---|
| Returns: | features : list(np.ndarray), length = len(traj_list) 
  |