Python source code: [download source: plot_voronoi.py]
import numpy as np
from sklearn.cluster import KMeans
import msmexplorer as msme
# Create a random dataset across several variables
rs = np.random.RandomState(42)
n, p = 1000, 2
d = rs.normal(0, 2, (n, p))
d += np.log(np.arange(1, p + 1)) * -5 + 10
# Cluster data using KMeans
kmeans = KMeans(random_state=rs)
kmeans.fit(d)
# Plot Voronoi Diagram
msme.plot_voronoi(kmeans, color_palette=msme.palettes.msme_rgb)