msmexplorer.plot_histogram

msmexplorer.plot_histogram(xs, bins=20, range=None, weights=None, color='k', smooth=None, smooth1d=None, labels=None, label_kwargs=None, show_titles=False, title_fmt='.2f', title_kwargs=None, truths=None, truth_color='#4682b4', scale_hist=False, quantiles=None, verbose=False, fig=None, max_n_ticks=5, top_ticks=False, use_math_text=False, hist_kwargs=None, **hist2d_kwargs)

Make a sick corner plot showing the projections of a data set in a multi-dimensional space. kwargs are passed to hist2d() or used for matplotlib styling.

Parameters:
xs : array_like[nsamples, ndim]

The samples. This should be a 1- or 2-dimensional array. For a 1-D array this results in a simple histogram. For a 2-D array, the zeroth axis is the list of samples and the next axis are the dimensions of the space.

bins : int or array_like[ndim,]

The number of bins to use in histograms, either as a fixed value for all dimensions, or as a list of integers for each dimension.

weights : array_like[nsamples,]

The weight of each sample. If None (default), samples are given equal weight.

color : str

A matplotlib style color for all histograms.

smooth, smooth1d : float

The standard deviation for Gaussian kernel passed to scipy.ndimage.gaussian_filter to smooth the 2-D and 1-D histograms respectively. If None (default), no smoothing is applied.

labels : iterable (ndim,)

A list of names for the dimensions. If a xs is a pandas.DataFrame, labels will default to column names.

label_kwargs : dict

Any extra keyword arguments to send to the set_xlabel and set_ylabel methods.

show_titles : bool

Displays a title above each 1-D histogram showing the 0.5 quantile with the upper and lower errors supplied by the quantiles argument.

title_fmt : string

The format string for the quantiles given in titles. If you explicitly set show_titles=True and title_fmt=None, the labels will be shown as the titles. (default: .2f)

title_kwargs : dict

Any extra keyword arguments to send to the set_title command.

range : iterable (ndim,)

A list where each element is either a length 2 tuple containing lower and upper bounds or a float in range (0., 1.) giving the fraction of samples to include in bounds, e.g., [(0.,10.), (1.,5), 0.999, etc.]. If a fraction, the bounds are chosen to be equal-tailed.

truths : iterable (ndim,)

A list of reference values to indicate on the plots. Individual values can be omitted by using None.

truth_color : str

A matplotlib style color for the truths makers.

scale_hist : bool

Should the 1-D histograms be scaled in such a way that the zero line is visible?

quantiles : iterable

A list of fractional quantiles to show on the 1-D histograms as vertical dashed lines.

verbose : bool

If true, print the values of the computed quantiles.

plot_contours : bool

Draw contours for dense regions of the plot.

use_math_text : bool

If true, then axis tick labels for very large or small exponents will be displayed as powers of 10 rather than using e.

max_n_ticks: int

Maximum number of ticks to try to use

top_ticks : bool

If true, label the top ticks of each axis

fig : matplotlib.Figure

Overplot onto the provided figure object.

hist_kwargs : dict

Any extra keyword arguments to send to the 1-D histogram plots.

**hist2d_kwargs

Any remaining keyword arguments are sent to corner.hist2d to generate the 2-D histogram plots.