msmbuilder.clustering

BaseFlatClusterer(metric[, trajectories, ...]) (Abstract) base class / mixin that Clusterers can extend. Provides convenience
Clarans(metric[, trajectories, ...])
Hierarchical(metric, trajectories[, method, ...])
HybridKMedoids(metric[, trajectories, ...])
KCenters(metric[, trajectories, ...])
concatenate_prep_trajectories(...) Concatenate a list of prepared trajectories and create a single prepared_trajectory.
unconcatenate_trajectory(trajectory, lengths) Take a single trajectory that was created by concatenating seperate trajectories and unconcenatenate it, returning the original trajectories.
concatenate_trajectories(trajectories) Concatenate a list of trajectories into a single long trajectory
deterministic_subsample(trajectories, stride) Given a list of trajectories, return a single trajectory
stochastic_subsample(trajectories, ...) Randomly subsample from a trajectory
p_norm(data[, p]) p_norm of an ndarray with XYZ coordinates
Versions