BaseFlatClusterer(metric[, trajectories, ...]) |
(Abstract) base class / mixin that Clusterers can extend. Provides convenience |
Clarans(metric[, trajectories, ...]) |
|
Hierarchical(metric, trajectories[, method, ...]) |
|
HybridKMedoids(metric[, trajectories, ...]) |
|
KCenters(metric[, trajectories, ...]) |
|
concatenate_prep_trajectories(...) |
Concatenate a list of prepared trajectories and create a single prepared_trajectory. |
unconcatenate_trajectory(trajectory, lengths) |
Take a single trajectory that was created by concatenating seperate trajectories and unconcenatenate it, returning the original trajectories. |
concatenate_trajectories(trajectories) |
Concatenate a list of trajectories into a single long trajectory |
deterministic_subsample(trajectories, stride) |
Given a list of trajectories, return a single trajectory |
stochastic_subsample(trajectories, ...) |
Randomly subsample from a trajectory |
p_norm(data[, p]) |
p_norm of an ndarray with XYZ coordinates |