Processing math: 100%

Warning: This documentation is for MSMBuilder version 2.8. — Latest stable version


Maximum-Likelihood Reversible Transition Matrix

Here, we sketch out the objective function and gradient used to find the maximum likelihood reversible count matrix.

Let Cij be the matrix of observed counts. C must be strongly connected for this approach to work! Below, f is the log likelihood of the observed counts.

f=ijCijlogTij

Let Tij=XijjXij, Xij=exp(uij), qi=jexp(uij)

Here, uij is the log-space representation of Xij. It follows that Tij=exp(uij)1qi, so log(Tij)=uijlog(qi)

f=ijCijuijijCijlogqi

Let Ni=jCij

f=ijCijuijiNilogqi

Let uij=uji for i>j, eliminating terms with i>j.

Let Sij=Cij+Cji

f=ijSijuij12iSiiuiiiNilogqi
dfduab=Sab12SabδabiNiqidqiduab
dqiduab=exp(uab)[δai+δbiδabδia]

Let vi=Niqi

iVidqiduab=exp(uab)(va+vbvaδab)

Thus,

dfduab=Sab12Sabδabexp(uab)(va+vbvaδab)
Versions