Find the k largest left eigenvalues and eigenvectors of a reversible row-stochastic matrix, sorted by eigenvalue magnitude
Parameters: | t_matrix : sparse or dense matrix
k : int
populations : np.ndarray, optional
right : bool, optional
dense_cutoff : int, optional
normalized : bool, optional
|
---|---|
Returns: | eigenvalues : ndarray
eigenvectors : ndarray
|
Other Params: | **kwargs :
|
See also
Notes
A reversible transition matrix is one that satisifies the detailed balance condition
A reversible transition matrix satisifies a number of special conditions. In particular, it is similar to a symmetric matrix \(S_{i, j} = \sqrt{\frac{pi_i}{\pi_j}} T_{i, j} = S_{j, i}\). This property enables a much more robust solution to the eigenvector problem, because of the superior numerical stability of hermetian eigensolvers.